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Abstract. The closed Gelfand–Tsetlin type formulae are constructed in this paper for the matrix
elements of the symplecticsp(4) Lie algebra in an arbitrary irreducible representation using the
reduction chainsp(4) ⊃ sp(2) ⊕ sp(2). All resulting formulae for the matrix elements were
obtained by directly solving the Cartan–Weyl commutation relations of thesp(4) algebra.

1. Introduction

The explicit construction of irreducible matrices is generally a difficult practical problem
in the representation theory of Lie algebras. A prototype to this problem is the well
known construction of matrix elements for the angular momentumsu(2) algebra [1]. The
generalization for the unitary and orthogonal algebras was given by Gelfand and Tsetlin [2–4].
The Gelfand–Tsetlin method provides suitable quantum numbers to label the vectors of the
bases corresponding to the canonical reductionssu(n) ⊃ su(n−1) andso(n) ⊃ so(n−1). It
also provides closed formulae for the matrix elements in terms of the given quantum numbers.
Unfortunately, the same program has not yet been developed for the symplectic algebras [4–8].

In this work, we construct the Gelfand–Tsetlin-type formulae for the matrix elements of
the symplecticsp(4) Lie algebra in an arbitrary irreducible representation using the canonical
reduction chainsp(4) ⊃ sp(2) ⊕ sp(2). The commutation relations for the generators
associated with the simple roots were solved by reducing them to recursion relations. Similar
formulae for the remaining elements were obtained by taking successive commutators of the
simple generators. The present result is intended to be helpful in applications in which the
handling of algebraic matrix elements in several different irreducible representations of the
symplecticsp(4) Lie algebra can be used.

Although the local isomorphismsp(4) ∼ so(5) is well known, there are some reasons
to develop the Gelfand–Tsetlin formulae for thesp(4) algebra itself. The first reason is that
the isomorphism is local and not global. This means that the present matrix elements can be
useful in calculating the matrices of the corresponding group elements. The second reason
is that all quantum numbers used here are explicitly given by the branching rules of the
chainsp(4) ⊃ sp(2) ⊕ sp(2) without the intermediateso(5) quantum numbers. Therefore,
the matrix elements presented here can be used in previous applications using theso(5)
algebra [9–11]. Another reason is that the Gelfand–Tsetlin formulae for theso(5) algebra
do not give irreducible matrices whose commutation relations are directly in the canonical
Cartan–Weyl form [4] whereas the irreducible matrices given here do. This feature can be
helpful in obtaining the analogous deformedsp(4) formulae to the unitary deformed algebras
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(or ‘quantum groups’) [12–14]. Finally, the present technique can be helpful in the achievement
of the corresponding matrix elements of thesp(6) algebra which has important applications
in nuclear physics [15] and, more recently, in molecular genetics [16,17].

This paper is organized in four sections. The matrix elements are presented in section 2.
The method followed in the calculation of the matrix elements is described in section 3; and
section 4 is reserved for summary and conclusions.

2. Matrix elements for the symplecticsp(4) algebra

Section 2.1 introduces the basic notation for roots and weights as well the canonical form for the
commutation relations; and section 2.2 presents the branching rules for the chainC2 ⊃ C1⊕C1.
The matrix elements and their properties are presented in section 2.3. The correspondence
with previous works using the isomorphismsp(4) ∼ so(5) and two special cases are discussed
in section 2.4.

2.1. The classicalC2 algebra

The classical semisimpleC2 ∼ sp(4) Lie algebra can be defined by the Cartan matrix

A =
(

2 −2
−1 2

)
. (1)

Once the Cartan matrix is known, the corresponding simple roots can be written in three
different bases as

α1 = {1, 0} = (2,−1) = [1,−1] (2)

α2 = {0, 1} = (−2, 2) = [0, 2] (3)

where the longest root was normalized to two and the notation is from Chen [18]. A pair of
braces,{ }, denotes the basis formed by the simple roots (SRS), while a pair of parentheses
( ), denotes the basis formed by the weights of the basic irreducible representations (Dynkin
labels, DYN). Square brackets, [ ], denote the basis formed by the positive weights of the
fundamental irreducible representation (Cartan or cartesian labels, FWS). Only the FWS basis
is orthonormal and, therefore, it is useful to calculate scalar products among roots or weights.
The last two positive roots

α3 = {1, 1} = (0, 1) = [1, 1] (4)

α4 = {2, 1} = (2, 0) = [2, 0] (5)

complete the whole set of positive roots. As usual, each element in the algebra can be put in
correspondence with a root:

Hi → (0, 0) (6)

E+
i → αi i = 1, 2. (7)

The elements{H1, H2, E
+
1 , E

+
2} are the generators of thesp(4) algebra and{H1, H2} are the

generators of the Abelian Cartan subalgebra. There are two other elements,E+
3 andE+

4 ,
associated with the positive rootsα3 andα4, respectively, which can be defined as

E+
3 ≡

1√
2

[E+
1 , E

+
2 ] (8)

E+
4 ≡

1√
2

[E+
1 , E

+
3 ]. (9)
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All four elementsE+
i are related to the elementsE−i associated with the negative roots through

E−i = (E+
i )

†. (10)

In this way, the defining commutation relations satisfied by those elements are

[Hi,Hj ] = 0 i, j = 1, 2 (11)

[Hi,E
±
j ] = ±(αj )iE±j i = 1 . . .2 j = 1 . . .4 (12)

[E+
i , E

−
i ] = (αi)1H1 + (αi)2H2 i = 1 . . .4 (13)

where the simple roots must be written in the basis formed by the positive weights of the
fundamental irreducible representation (FWS). We can see from the defining relations (11)–
(13) that thesp(4) algebra has twoC1 ∼ sp(2) subalgebras: one formed byH2 andE±2 and
another formed byH1 andE±4 .

It can be useful, for future applications involving deformed algebras, to give the
corresponding Chevalley form of thesp(4) algebra. After the simple identification

h1 ≡ H1−H2 e1 ≡ E+
1 f1 ≡ E−1 (14)

h2 ≡ 2H2 e2 ≡ 1√
2
E+

2 f2 ≡ 1√
2
E−2 (15)

the Chevalley form is obtained. Now the commutation relations are

[hi, hj ] = 0 (16)

[hi, ej ] = +aij ej (17)

[hi, fj ] = −aijfj (18)

[ei, fj ] = δi,jhi i, j = 1, 2 (19)

whereaij are the matrix elements of the Cartan matrix (1). The Serre relations can be written
as

2∑
k=0

(−1)k
(

1− aij
k

)
eki ej e

1−aij−k
i = 0 i 6= j = 1, 2. (20)

When the generatorse are replaced by the corresponding generatorsf , then another set of
Serre relations is obtained. Note that these relations are also satisfied by the generators in the
Cartan–Weyl form.

2.2. Branching rule for the chainC2 ⊃ C1⊕ C1

One important step in obtaining the matrix elements themselves is the construction of the
complete set of commuting operators (CSCO). The CSCO are invariant operators formed by
the elements of the given algebra and by the elements of its subalgebras. In general it is
possible to have many different reduction chains of subalgebras. A particular chain can be
chosen regarding the intended application. The eigenvalues of the CSCO (quantum numbers)
give enough information to label each vector (eigenfunction) of any irreducible representation
(IRREP) in a unique form. A difficult task is to discover how a given IRREP contains the
IRREPs of the subalgebras in a chosen reduction chain. The solution to this problem is better
known as branching rules. In another words, given an IRREP characterized by a given highest
weight, the branching rules tell us how to compute, from the given highest weight, all the other
highest weights (and its weight systems) for the IRREPs of the subalgebras. The Gelfand–
Tsetlin method [4], e.g., gives a very efficient prescription to accomplish this for the unitary
and orthogonal algebras.
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Table 1. The weight system in the FWS base for the first three low-dimensional IRREPs ofsp(4)
algebra.

[1, 0] [1, 1] [2, 0]

σ1 σ2 γ12 h1 h2 σ1 σ2 γ12 h1 h2 σ1 σ2 γ12 h1 h2

1 1 0 1 1 0 1 1 1 1 1 2 0 2 2 0
2 1 0 1 −1 0 1 1 1 −1 −1 2 0 2 −2 0
3 0 1 0 0 1 1 1 1 1 −1 1 1 1 1 1
4 0 1 0 0 −1 1 1 1 −1 1 1 1 1 −1 −1
5 0 0 1 0 0 1 1 1 1 −1
6 1 1 1 −1 1
7 0 2 0 0 2
8 0 2 0 0 −2
9 0 2 0 0 0

10 2 0 2 0 0

Although a lot of generating functions have been developed to give the branching rules
of many chains of Lie algebras [19], only recently was the branching rule for the reduction
Cn ⊃ Cn−1⊕C1 analytically solved [20]. For thesp(4) algebra, each vector in an irreducible
representation given by the highest weight

ω2 = [ω12, ω22] = (ω12− ω22, ω22) = {ω12,
1
2(ω12− ω22)} (21)

is labelled by the quantum numbers (in the FWS basis) of thesp(4) ⊃ sp(2)⊕sp(2) canonical
chain as follows:∣∣∣∣∣∣∣
ω12 ω22

γ12 h2

ω11

h1

〉
≡ |σ1, σ2(γ12), h1, h2〉

ω12 > γ12 > ω22, γ12 > ω11 > γ12− ω22

σ1 = ω11 σ2 = ω12 + ω22 + σ1− 2γ12

hi = σi σi − 2, . . . ,−σi i = 1, 2.

(22)

The dimension of each IRREP is

dim([ω12, ω22]) = 1
6(2 +ω11)(ω12 + 1)(1 +ω11− ω12)(3 +ω11 + ω12). (23)

The quantum numbersσi are the highest weights of thesp(2) ⊕ sp(2) irreducible
representations and [h1, h2] are the weights composing the weight system of the highest weight
ω2. The reduction chainsp(4) ⊃ sp(2) ⊕ sp(2) is canonical: it means that the IRREPs of
thesp(2) subalgebras appear only once in a given IRREP of thesp(4) algebra. This is not the
case for the higher-dimensional symplectic algebras [19, 20]. It is worth considering the first
three IRREPs of thesp(4) explicitly. The first two low-dimensional IRREPs are the two basic
IRREPs: the fundamental IRREP of dimension four given by the highest weight [1, 0] = (1, 0)
and the basic IRREP of dimension five given by the highest weight [1, 1] = (0, 1). The
adjoint IRREP of dimension ten given by [2, 0] = (2, 0) is the third low-dimensional one.
The corresponding weights are shown in table 1. The next section describes the actions for all
elements of thesp(4) algebra on the basis (22).

2.3. The matrix elements

This section presents closed formulae to calculate explicitly the matrix elements of the
generators of thesp(4) algebra in terms of the quantum numbers (22). The corresponding
matrices satisfy the relation (10) and the commutation relations in the Cartan–Weyl form
(11)–(13).
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Table 2. Relative phase in front of the coefficients of the actions ofE±1 andE±3 elements.

A± B± C± D± A′± B ′± C′± D′±

+ ± ∓ + ∓ + + ±
+ ∓ ± + ∓ − − ±
± + + ∓ − ± ∓ −
∓ + + ± + ± ∓ +

Some matrix elements have very simple formulae. For example, since in the Cartan–
Weyl form the weights are the eigenvalues of the generators in the Cartan subalgebra, then, by
definition,

Hi |σ1, σ2, h1, h2〉 = hi |σ1, σ2, h1, h2〉 i = 1, 2. (24)

Another set of very simple actions are those regarding the raising (lowering) operators
E±i , i = 2, 4, of the sp(2) algebras. These actions are similar to the action of raising
(lowering) angular momentum operators of thesu(2) ∼ sp(2) algebra and, therefore, they
can be constructed easily (see the appendix for a simple derivation):

E±2 |σ1, σ2, h1, h2〉 = { 12(σ2 ∓ h2)(σ2 ± h2 + 2)} 1
2 |σ1, σ2, h1, h2 ± 2〉 (25)

E±4 |σ1, σ2, h1, h2〉 = { 12(σ1∓ h1)(σ1± h1 + 2)} 1
2 |σ1, σ2, h1± 2, h2〉. (26)

These operators do not couple irreducible representations ofsp(2) subalgebras because they
are puresp(2) elements inside thesp(4) algebra.

Unlike the previous ones, theE±1 generators, which are genuinesp(4) elements, couple
irreducible representations of thesp(2) subalgebras (see section 3 for a deduction):

E±1 |σ1, σ2, h1, h2〉 = A±|σ1 + 1, σ2 + 1, h1± 1, h2 ∓ 1〉
±B±|σ1 + 1, σ2 − 1, h1± 1, h2 ∓ 1〉
∓C±|σ1− 1, σ2 + 1, h1± 1, h2 ∓ 1〉
+D±|σ1− 1, σ2 − 1, h1± 1, h2 ∓ 1〉. (27)

The remainingsp(4) elements,E±3 , defined by the first commutation relation in (8), have the
following matrix elements:

E±3 |σ1, σ2, h1, h2〉 = ∓A′±|σ1 + 1, σ2 + 1, h1± 1, h2 ± 1〉
+B ′±|σ1 + 1, σ2 − 1, h1± 1, h2 ± 1〉
+C ′±|σ1− 1, σ2 + 1, h1± 1, h2 ± 1〉
±D′±|σ1− 1, σ2 − 1, h1± 1, h2 ± 1〉 (28)

where the primed coefficients are obtained from the unprimed ones just by exchanging the sign
of h2:

X′± = X±(h2→−h2) X ∈ {A,B,C,D}. (29)

Note that only the first neighbourhood (σi±1) irreducible representations of thesp(2) algebras
are coupled byE±1 andE±3 elements of thesp(4) algebra. The relative phases in front of the
A±, B±, C± and,D± coefficients in equation (27) can be chosen in four different ways as
shown in table 2. All of them are consistent with the Cartan–Weyl commutation relations (see
section 3).
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The coefficientsA+, B+, C+ andD+ depend on the quantum numbers (22) as follows:

A+ =
{
(ω+ − σ+)(ω+ + σ+ + 6)(σ+ − ω− + 2)(σ+ + ω− + 4)

64(σ1 + 1)(σ1 + 2)(σ2 + 1)(σ2 + 2)

}1
2

×{(σ1 + h1 + 2)(σ2 − h2 + 2)} 1
2 (30)

D+ =
{
(ω+ − σ+ + 2)(ω+ + σ+ + 4)(σ+ − ω−)(σ+ + ω− + 2)

64σ1(σ1 + 1)σ2(σ2 + 1)

}1
2

×{(σ1− h1)(σ2 + h2)} 1
2 (31)

B+ =
{
(ω− + σ− + 2)(ω− − σ−)(ω+ − σ− + 2)(ω+ + σ− + 4)

64(σ1 + 1)(σ1 + 2)σ2(σ2 + 1)

}1
2

×{(σ1 + h1 + 2)(σ2 + h2)} 1
2 (32)

C+ =
{
(ω− + σ−)(ω− − σ− + 2)(ω+ − σ− + 4)(ω+ + σ− + 2)

64σ1(σ1 + 1)(σ2 + 1)(σ2 + 2)

}1
2

×{(σ1− h1)(σ2 − h2 + 2)} 1
2 (33)

where

ω± = ω12± ω22 σ± = σ1± σ2. (34)

All coefficients (30)–(33) are real numbers and the sumσ+ is only present inA+ andD+ while
the differenceσ− is only present inB+ andC+. In addition to this, theD+ andC+ coefficients
can be obtained fromA+ andB+ in the following manner:

D+ = A+(σ1→ σ1− 1, σ2→ σ2 − 1, h1→−(h1 + 1), h2→−(h2 − 1)) (35)

C+ = B+(σ1→ σ1− 1, σ2→ σ2 + 1, h1→−(h1 + 1), h2→−(h2 − 1)). (36)

As a consequence of (10), the corresponding lowering coefficients are related to the raising
ones as follows:

A−(σ1, σ2, h1, h2) = D+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1)

B−(σ1, σ2, h1, h2) = C+(σ1 + 1, σ2 − 1, h1− 1, h2 + 1)

C−(σ1, σ2, h1, h2) = B+(σ1− 1, σ2 + 1, h1− 1, h2 + 1)

D−(σ1, σ2, h1, h2) = A+(σ1− 1, σ2 − 1, h1− 1, h2 + 1).

(37)

For completeness, the action of the Casimir operator, or the second-order invariant, of the
sp(4) algebra and as well those of thesp(2) subalgebras,

K2 = H 2
1 +H 2

2 +
4∑
i=1

[E+
i , E

−
i ]+ (38)

J1 = H 2
1 + [E+

4 , E
−
4 ]+ (39)

J2 = H 2
2 + [E+

2 , E
−
2 ]+ (40)

where [a, b]+ = ab + ba, were also calculated to ensure that the representation is properly
adapted to the used chain:

K2|ω12, ω22, σ1, σ2, h1, h2〉 = [ω12(ω12 + 4) + ω22(ω22 + 2)]|ω12, ω22, σ1, σ2, h1, h2〉 (41)

Ji |ω12, ω22, σ1, σ2, h1, h2〉 = σi(σi + 2)|ω12, ω22, σ1, σ2, h1, h2〉 i = 1, 2. (42)
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2.4. Special cases

Let us consider here two special cases of irreducible representations: (I) the symmetric IRREPs
given by [ω12, 0] = (ω12, 0) and, (II) the anti-symmetric IRREPs given by [ω12, ω12] =
(0, ω12). The respective dimensions are

dim([ω12, 0]) = 1
6(2 +ω12)(ω12 + 1)(3 +ω12) (43)

dim([ω12, ω12]) = 1
6(2 +ω12)(ω12 + 1)(3 + 2ω12). (44)

For the symmetric case, the branching rules (22) giveσ1 = γ12 andσ2 = ω12− σ1. Therefore,
from equations (34), we haveσ+−ω± = 0, which means that only the non-null matrix elements
of E1 are given by the coefficientsB andC:

E±1 |σ1, h1, h2〉 = ± 1
2{(σ1 + h1 + 2)(σ2 + h2)} 1

2 |σ1 + 1, h1± 1, h2 ∓ 1〉
∓ 1

2{(σ1− h1)(σ2 − h2 + 2)} 1
2 |σ1− 1, h1± 1, h2 ∓ 1〉. (45)

For the anti-symmetric case, the branching rules (22) giveγ12 = ω12 andσ2 = σ1. Therefore,
from equations (34), we haveσ−±ω− = 0, which means that only the non-null matrix elements
of E1 are now given by the coefficientsA andD:

E±1 |σ1, h1, h2〉 = 1

2

{
(ω12− σ1)(ω12 + σ1 + 3)(σ1 + h1 + 2)(σ1− h2 + 2)

(σ1 + 1)(σ1 + 2)

}1
2

×|σ1 + 1, h1± 1, h2 ∓ 1〉

+
1

2

{
(ω12− σ1 + 1)(ω12 + σ1 + 2)(σ1− h1)(σ1 + h2)

σ1(σ1 + 1)

}1
2

×|σ1− 1, h1± 1, h2 ∓ 1〉. (46)

It is worth computing the matrices of the fundamental irreducible representation [1, 0].
The ordering of the vectors is shown in the first column of table 1. The matrices for this IRREP
can be written in a convenient form using the 4× 4 Weyl matricesAij as shown in table 3.
The Weyl matrices has only a unit nun-null element in theij entry and they obey the following
commutation relation:

[Aij , Akl ] = δjkAil − δliAkj . (47)

The correspondence between the parametrization used in the present work and that used by
K T Hecht [9] (table 1, p 180) is also shown in table 3. Using this correspondence we can see
that the matrix elements ofF− 1

2 ,− 1
2

calculated by Hecht [9] (section 4, p 184) are precisely the

matrix elements ofE−3 given by equation (28) after the identificationσ1 = 23, h1 = 2M3,
σ2 = 2J andh2 = 2MJ . It should be remembered here that the matrix elements calculated by
Hecht [9] are the matrix elements of the elements of the orthogonalso(5) algebra in the chain
su(4) ⊃ so(5) ⊃ so(4)and also the local isomorphismssp(4) ∼ so(5), so(4) ∼ su(2)⊕su(2)
andsp(2) ∼ su(2).

3. Solution for the commutation relations

This section describes the method used to solve the commutation relations for the generators
of the sp(4) algebra in order to find their matrix elements. The fundamental ideia is to
solve the commutation relations by transforming them in recurrence relations. The matrix
elements for the generators of thesp(2) subalgebras as well those of the Cartan subalgebra
are calculated in section 3.1. The puresp(4) generator and its selection rules in the chain
sp(4) ⊃ sp(2) ⊕ sp(2) are identified in section 3.2. Using the Cartan–Weyl commutation
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Table 3. The matrices of the fundamental representation and the correspondence between the
parametrizations of thesp(4) algebra used in this work and by Hecht [9].

This work Hecht This work Hecht

H1 = A11− A22 = 2H1 H2 = A33− A44 = 2H2

E+
1 = A13− A42 = √2F 1

2 ,− 1
2

E−1 = A31− A24 = √2F− 1
2 ,

1
2

E+
2 =
√

2A34 = 1√
2
F0,1 E−2 =

√
2A43 = 1√

2
F0,−1

E+
3 = A14 +A32 = √2F 1

2 ,
1
2

E−3 = A41 +A23 = √2F− 1
2 ,− 1

2

E+
4 =
√

2A12 = 1√
2
F1,0 E−4 =

√
2A21 = 1√

2
F−1,0

relations involving the raising–lowering puresp(4) generator, the corresponding recurrence
relations are established in section 3.3 and solved in section 3.4.

3.1. Matrix elements for the subalgebras

Some formulae presented in subsection 2.3 are easily obtained. For example, since by definition
the weightshi of an irreducible representation are the eigenvalues of the elementsHi composing
the Cartan subalgebra, then the equation (24) is established. Other simple matrix elements are
those of the raising (lowering) generators of thesp(2) subalgebras. As shown in the appendix,
the commutation relations in this case are directly solved without any difficulty. These results
are the same for the higher-dimensional symplectic algebras.

3.2. The selection rules for the puresp(4) generator

In general, the raising–lowering operators associated with the non-simple roots can be defined
by the raising-lowering operators associated with the simple roots. For example, the elements
E3 andE4 associated with the non-simple rootsα3 = α1 +α2 andα4 = 2α1 +α2 are defined by
the generatorsE1 andE2, associated with the simple rootsα1 andα2, as shown in equations (8)
and (9). Thus, for the present case, we only have to solve one set of recurrence relations supplied
by the commutation relation of the generatorE1.

Before we establish the recurrence relations, we must to know how the operatorE1 will
act on a generic base vector given in (22). Naturally, the action proposed in equation (27) is
the simplest one which is compatible with the branching rules (22) and the rootα1 = [1,−1].
If it is assumed that the basis (22) is orthogonal then the relations (37) between the raising and
the lowering coefficients in equation (27) are easily derived using the ‘unitary’ condition (10).
It is important to emphasize that there are vectors (‘patterns’) in the action (27) which do
not obey the conditions (22). Thus it must be ensured that the proper coefficients for those
non-admissible vectors will be zero (the selection rules). For example, when the quantum
numbersσi are changed, then, from the conditions (22), the corresponding weightshi must be
changed according to the following rules:

σi → σi + 1⇒ hi = −(σi + 1) − (σi − 1) − (σi − 3), . . . , σi − 3 σi − 1 σi + 1

σi → σi − 1⇒ hi = −(σi − 1) − (σi − 3), . . . , σi − 3 σi − 1. (48)

This means that whenhi = ±σi , then some non-admissible patterns may be possible. Indeed,
by the rules (48), whenh2 = −σ2 it is possible to haveh2 = −(σ2 + 1) which is not allowed
in (48). Consequently, the coefficientsB+ andD+ in (27) must be proportional to(σ2 + h2).
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All possible cases are:

E+
1 |σ1, σ2, h1,−σ2〉 → B+|σ1 + 1, σ2 − 1, h1 + 1,−(σ2 + 1)〉 ⇒ B+ ∼ (σ2 + h2)

E+
1 |σ1, σ2, σ1, h2〉 → C+|σ1− 1, σ2 + 1, σ1 + 1, h2 − 1〉 ⇒ C+ ∼ (σ1− h1)

E+
1 |σ1, σ2, σ1, h2〉 → D+|σ1− 1, σ2 − 1, σ1 + 1, h2 − 1〉 ⇒ D+ ∼ (σ1− h1)

E+
1 |σ1, σ2, h1,−σ2〉 → D+|σ1− 1, σ2 − 1, h1 + 1,−(σ2 + 1)〉 ⇒ D+ ∼ (σ2 + h2)

(49)

and

E−1 |σ1, σ2, h1, σ2〉 → B−|σ1 + 1, σ2 − 1, h1− 1, σ2 + 1〉 ⇒ B− ∼ (σ2 − h2)

E−1 |σ1, σ2,−σ1, h2〉 → C−|σ1− 1, σ2 + 1,−(σ1 + 1), h2 + 1〉 ⇒ C− ∼ (σ1 + h1)

E−1 |σ1, σ2,−σ1, h2〉 → D−|σ1− 1, σ2 − 1,−(σ1 + 1), h2 + 1〉 ⇒ D− ∼ (σ1 + h1)

E−1 |σ1, σ2, h1, σ2〉 → D−|σ1− 1, σ2 − 1, h1− 1, σ2 + 1〉 ⇒ D− ∼ (σ2 − h2).

(50)

Another set of selection rules is obtained by picking up the extreme values for the quantum
numbersγ12 and σ1 = ω11 in the branching rules (22). For example, whenσ1 = γ12,
according to the action (27) the condition{σ1 → σ1 + 1, σ2 → σ2 + 1} corresponds to
{γ12→ γ12, σ1→ γ12+1}, which would give a non-admissible vector withσ1 > γ12. In order
to avoid this, the coefficientA± must be proportional to(γ12− σ1). All other possible cases
can be found in a similar way:

A± ∼ (γ12− σ1) = 1
2[(ω12 + ω22)− (σ1 + σ2)]

B± ∼ (ω12− γ12) = 1
2[(ω12− ω22)− (σ1− σ2)]

C± ∼ (γ12− ω22) = 1
2[(ω12− ω22) + (σ1− σ2)]

D± ∼ (σ1− (γ12− ω22)) = 1
2[(σ1 + σ2)− (ω12− ω22)].

(51)

Now, using the relations (37), all the selection rules (49)–(51) can be rewritten in a more
suitable form,

A+ = a{(σ1 + h1 + 2)(σ2 − h2 + 2)(ω12 + ω22− σ1− σ2)(σ1 + σ2 + 2− ω12 + ω22)} 1
2

B+ = b{(σ1 + h1 + 2)(σ2 + h2)(ω12− ω22− σ1 + σ2)(ω12− ω22 + σ1− σ2 + 2)} 1
2

−C+ = c{(σ1− h1)(σ2 − h2 + 2)(ω12− ω22 + σ1− σ2)(ω12− ω22− σ1 + σ2 + 2)} 1
2

D+ = d{(σ1− h1)(σ2 + h2)(σ1 + σ2 − ω12 + ω22)(ω12 + ω22− σ1− σ2 + 2)} 1
2

(52)

where the normalizing functionsa–d do not depend on the weightshi . The negative sign in
front of C+ was chosen for convenience and corresponds to one of four possibilities for the
relative phase choices shown in table 2 (see the next section).

3.3. The recurrence relations

The normalizing coefficientsa–d are determined letting the Cartan–Weyl commutation relation

[E+
1 , E

−
1 ] = E+

1E
−
1 − E−1 E+

1 = H1−H2

act on a generic vector given in (22). Only one of the nine new vectors created on the left-
hand side has a counterpart on the right-hand side: the diagonal vector|σ1, σ2, h1, h2〉. The
corresponding coefficients to this vector can be written as

(h1− h2) +A+(σ1, σ2, h1, h2)
2 +B+(σ1, σ2, h1, h2)

2 +C+(σ1, σ2, h1, h2)
2

+D+(σ1, σ2, h1, h2)
2 = A+(σ1− 1, σ2 − 1, h1− 1, h2 + 1)2

+B+(σ1− 1, σ2 + 1, h1− 1, h2 + 1)2 +C+(σ1 + 1, σ2 − 1, h1− 1, h2 + 1)2

+D+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1)2. (53)
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The new vectors|σ1± 2, σ2 ± 2, h1, h2〉 and|σ1± 2, σ2 ∓ 2, h1, h2〉 give the relations

A+(σ1, σ2, h1, h2)D
+(σ1 + 2, σ2 + 2, h1, h2)

= A+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1)D+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1) (54)

and

B+(σ1, σ2, h1, h2)C
+(σ1 + 2, σ2 − 2, h1, h2)

= B+(σ1 + 1, σ2 − 1, h1− 1, h2 + 1)C+(σ1 + 1, σ2 − 1, h1− 1, h2 + 1) (55)

respectively. Using (52), the last two relations can be simplified to

a(σ1, σ2)d(σ1 + 2, σ2 + 2) = a(σ1 + 1, σ2 + 1)d(σ1 + 1, σ2 + 1)

b(σ1, σ2)c(σ1 + 2, σ2 − 2) = b(σ1 + 1, σ2 − 1)c(σ1 + 1, σ2 − 1)
(56)

respectively, whose solutions are

d(σ1, σ2) = a(σ1− 1, σ2 − 1)

c(σ1, σ2) = b(σ1− 1, σ2 + 1).
(57)

The remaining relations

A+(σ1, σ2, h1, h2)C
+(σ1 + 2, σ2, h1, h2) +B+(σ1, σ2, h1, h2)D

+(σ1 + 2, σ2, h1, h2)

= A+(σ1 + 1, σ2 − 1, h1− 1, h2 + 1)C+(σ1 + 1, σ2 − 1, h1− 1, h2 + 1)

+B+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1)D+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1) (58)

and

A+(σ1, σ2, h1, h2)B
+(σ1, σ2 + 2, h1, h2) +C+(σ1, σ2, h1, h2)D

+(σ1, σ2 + 2, h1, h2)

= A+(σ1− 1, σ2 + 1, h1− 1, h2 + 1)B+(σ1− 1, σ2 + 1, h1− 1, h2 + 1)

+C+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1)D+(σ1 + 1, σ2 + 1, h1− 1, h2 + 1) (59)

come from the new vectors|σ1±2, σ2, h1, h2〉 and|σ1, σ2±2, h1, h2〉. These last two relations
fix the relative phase to the coefficientsA–D as shown in table 2.

3.4. Solution of the recurrence relations

Using (52) and (57) the homogeneous relation (53) can be rewritten as

8(σ1, σ2)h2 +4(σ1, σ2)(h1− h2) = 0 (60)

where

8(σ1, σ2) = (σ1− σ2)(ω12 + ω22− σ1− σ2)(ω12− ω22− σ1− σ2 − 2)a2(σ1, σ2)

−(σ1− σ2)(ω12 + ω22− σ1− σ2 + 2)(ω12− ω22− σ1− σ2)a
2(σ1− 1, σ2 − 1)

+(σ1 + σ2 + 2)(ω12− ω22 + σ1− σ2 + 2)(ω12− ω22− σ1 + σ2)b
2(σ1, σ2)

−(σ1 + σ2 + 2)(ω12− ω22 + σ1− σ2)(ω12− ω22− σ1 + σ2 + 2)b2(σ1− 1, σ2 + 1) (61)

and

4(σ1, σ2) = 1− 2(σ2 + 2)(ω12 + ω22− σ1− σ2)(ω12− ω22− σ1− σ2 − 2)a2(σ1, σ2)

+2(σ2)(ω12 + ω22− σ1− σ2 + 2)(ω12− ω22− σ1− σ2)a
2(σ1− 1, σ2 − 1)

+2(σ2)(ω12− ω22 + σ1− σ2 + 2)(ω12− ω22− σ1 + σ2)b
2(σ1, σ2)

−2(σ2 + 2)(ω12− ω22 + σ1− σ2)(ω12− ω22− σ1 + σ2 + 2)b2(σ1− 1, σ2 + 1). (62)
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Since, in general, the quantum numbersh1 andh2 are independents, then, from equation (60),
the nonlinear system of recurrence equations{8 = 0, 4 = 0} must be solved. This is better
accomplished by rewritingσ2 = ω12 + ω22 + σ1− 2γ12 where, from (22),

γ12 = ω22 ω22 + 1, . . . , ω12

σ1 = γ12− ω22 γ12− ω22 + 1, . . . , γ12.
(63)

In this way, the previous equations for8 and4 can be written as

8(γ12, σ1) = 4(2γ12− ω12− ω22)(γ12− σ1)(γ12− σ1− 1− ω22)a
2(γ12, σ1)

−4(2γ12− ω12− ω22)(γ12− σ1 + 1)(γ12− σ1− ω22)a
2(γ12, σ1− 1)

+4(ω12 + ω22− 2γ12 + 2σ1 + 2)(ω12− γ12)(γ12 + 1− ω22)b
2(γ12, σ1)

−4(ω12 + ω22− 2γ12 + 2σ1 + 2)(ω12− γ12 + 1)(γ12− ω22)b
2

×(γ12− 1, σ1− 1) (64)

and

4(γ12, σ1) = 1− 8(ω12 + ω22 + σ1− 2γ12 + 2)(γ12− σ1)(γ12− σ1− 1− ω22)a
2(γ12, σ1)

+8(ω12 + ω22 + σ1− 2γ12)(γ12− σ1 + 1)(γ12− σ1− ω22)a
2(γ12, σ1− 1)

+8(ω12 + ω22 + σ1− 2γ12)(ω12− γ12)(γ12 + 1− ω22)b
2(γ12, σ1)

−8(ω12 + ω22 + σ1− 2γ12 + 2)(ω12− γ12 + 1)(γ12− ω22)b
2(γ12− 1, σ1− 1).

(65)

The solutions are

a2(σ1, σ2) = 1

64

(ω12 + ω22 + σ1 + σ2 + 6)(ω12− ω22 + σ1 + σ2 + 4)

(σ1 + 1)(σ1 + 2)(σ2 + 1)(σ2 + 2)

b2(σ1, σ2) = 1

64

(ω12 + ω22− σ1 + σ2 + 2)(ω12 + ω22 + σ1− σ2 + 4)

(σ1 + 1)(σ1 + 2)σ2(σ2 + 1)
.

(66)

As expected, no further selection rules are present in the normalizing coefficientsa andb. As
we can see from (22), the right-hand side of (66) has only positive non-null terms.

The procedure used to find the solutions (66) was the most natural one: (I) starting with
the lowest value ofγ12, γ12 = ω22, then a couple of relations begining with the highest value
of σ1, σ1 = γ12, were solved fora andb and; (II) using these particular solutions with fixed
γ12, a general form in terms ofσ1 was found toa andb. Steps (I) and (II) were repeated until
a general form in terms ofγ12 was also found, too.

4. Conclusions

The commutation relations for the generators of thesp(4) algebra were explicitly solved based
on the branching rules of the chainsp(4) ⊃ sp(2)⊕ sp(2). This means that there is a closed
formula for calculating any matrix element for all elements of thesp(4) algebra in an arbitrary
irreducible representation. All irreducible matrices are real and they satisfy the commutation
relations in the Cartan–Weyl form. Therefore, the results presented here are very convenient
for applications in which the algebraic handling of several different irreducible representations
can be used.
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Appendix. Matrix elements for the symplecticsp(2) algebra

The following is a simple derivation for the matrix elements (25), (26). The commutation
relations for thesp(2) algebra in the Cartan–Weyl form can be written as

[H1, E
±
1 ] = ±E±1

[E±1 , E
∓
1 ] = ±2H1.

(67)

As usual, the elementE−1 associated with the negative root is obtained from the elementE+
1

by a real transposition:

E−1 = (E+
1)

T. (68)

This is all that is needed to write the corresponding unitary irreducible matrices as

E+
1 +E−1 i(E+

1 − E−1 ). (69)

Each unitary irreducible representation for thesp(2) algebra is given by a positive integerω11

(the highest weight). Theω11 + 1 basis vectors are labelled by [20]

|ω11, h1〉 h1 = ω11, ω11− 2, . . . ,−ω11 (70)

where theh1 numbers are the eigenvalues of the diagonal elementH1,

H1|ω11, h1〉 = h1|ω11, h1〉. (71)

Using the first relation in (67) and (71), we can see that theE±1 elements are raising (lowering)
operators with step two:

H1(E
±
1 |ω11, h1〉) = (h1± 2)(E±1 |ω11, h1〉).

Thus, from the last relation,

E±1 |ω11, h1〉 = A±(ω11, h1)|ω11, h1± 2〉 h1 = −ω11,−ω11 + 2, . . . , ω11. (72)

In order to avoid the non-allowed vectors|ω11, ω11± 2〉 whenh1 = ±ω11, we must have

A±(ω11,±ω11) = 0

which give the following selection rules:

A± ∼ (ω11∓ h1). (73)

The coefficientsA± are related to each other by the condition (68):

〈ω11, h1|E+
1 |ω11, h1− 2〉 = A−(ω11, h1)〈ω11, h1− 2|ω11, h1− 2〉

= A+(ω11, h1− 2)〈ω11, h1|ω11, h1〉.
Assuming the basis (70) is orthogonal and normalized, the following relation results from the
last equation:

A+(ω11, h1) = A−(ω11, h1 + 2). (74)

Now, using (73) and (74), we can write the coefficientsA± in the following form:

A± = a(ω11){(ω11∓ h1)(ω11± h1 + 2)} 1
2 (75)

wherea(ω11) is the normalizing coefficient. Using (72) and (74), the second commutation
relation in (67) gives a recurrence relation forA±:

A−(ω11, h1 + 2)2 = A−(ω11, h1)
2 − 2h1 h1 = −ω11 − ω11 + 2, . . . , ω11. (76)

The solution,

A−(ω11, h1) = { 12(ω11− h1 + 2)(ω11 + h1)} 1
2 (77)
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can be found in two distinct ways: (I) directly solving the recurrence relation (76) by letting
h1 assume a few values or (II) substituting (75) in (76) to determinea2 = 1

2. Therefore, the
matrix elements for thesp(2) algebra are:

H1|ω11, h1〉 = h1|ω11, h1〉
E±1 |ω11, h1〉 = { 12(ω11∓ h1)(ω11± h1 + 2)} 1

2 |ω11, h1± 2〉. (78)

It follows from this action that the Casimir operator

J = H 2
1 +E+

1E
−
1 +E−1 E

+
1 (79)

as expected [4], has the eigenvalue

J |ω11, h1〉 = ω11(ω11 + 2)|ω11, h1〉. (80)
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